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Overview

What is the relationship between belief, evidence, and knowledge?

This is a very old question, but modern work in epistemic logic
offers new approaches and insights.

In fact, topological models provide a framework naturally suited to
the representation of evidence and its relationship to knowledge
and belief.
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Overview

Our starting point is a proposal of Stalnaker’s for a logic of
knowledge and belief.

I We refine and extend this proposal by carefully distinguishing
two epistemic notions:

(1) an “evidence-in-hand” conception of knowledge, and
(2) a weaker “evidence-out-there” notion of what could come to

be known.

I To do this, we import Stalnaker’s principles into a richer
semantic setting based on topological subset spaces.
I These models are rich enough to respect the distinction

between (1) and (2), yielding a trimodal logic of knowledge,
knowability, and belief.

3 / 35



Overview

Our starting point is a proposal of Stalnaker’s for a logic of
knowledge and belief.
I We refine and extend this proposal by carefully distinguishing

two epistemic notions:

(1) an “evidence-in-hand” conception of knowledge, and
(2) a weaker “evidence-out-there” notion of what could come to

be known.

I To do this, we import Stalnaker’s principles into a richer
semantic setting based on topological subset spaces.
I These models are rich enough to respect the distinction

between (1) and (2), yielding a trimodal logic of knowledge,
knowability, and belief.

3 / 35



Overview

Our starting point is a proposal of Stalnaker’s for a logic of
knowledge and belief.
I We refine and extend this proposal by carefully distinguishing

two epistemic notions:

(1) an “evidence-in-hand” conception of knowledge, and
(2) a weaker “evidence-out-there” notion of what could come to

be known.

I To do this, we import Stalnaker’s principles into a richer
semantic setting based on topological subset spaces.
I These models are rich enough to respect the distinction

between (1) and (2), yielding a trimodal logic of knowledge,
knowability, and belief.

3 / 35



Logic for knowledge and belief

Let LK,B denote a classical propositional language augmented
with modalities K and B for knowledge and belief:

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |ϕ ∨ ψ |ϕ→ ψ |Kϕ |Bϕ.

So the formula Kϕ expresses knowledge of ϕ, while Bϕ expresses
belief in ϕ.

Using this language, one can articulate a variety of postulates
about knowledge, belief, and their interplay.
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Logic for knowledge and belief

For example...

Kϕ→ ϕ

“If you know ϕ, then ϕ is true.”

Bϕ→ BBϕ

“If you believe ϕ, then you believe that you believe it.”

Kϕ→ Bϕ

“If you know ϕ, then you believe ϕ.”
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Logic for knowledge and belief

Which assumptions are appropriate? That depends on the
particular conception of knowledge/belief one seeks to model.

I Modal logic does not and cannot arbitrate the “ultimate
truth” of such assumptions.

I Rather, it provides a framework for reasoning formally about
the relationships between different assumptions and their
logical consequences.
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Stalnaker’s system

Stalnaker has proposed a logic intended to capture the relationship
between knowledge and belief, where belief is interpreted in the
strong sense of subjective certainty.

This logic extends the classical S4 system for knowledge...

(KK) K(ϕ→ ψ)→ (Kϕ→ Kψ) Distribution

(TK) Kϕ→ ϕ Factivity

(4K) Kϕ→ KKϕ Positive introspection

(NecK) from ϕ infer Kϕ Necessitation

S4K axioms for knowledge
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Stalnaker’s system

...with the following additional axioms.

(DB) Bϕ→ ¬B¬ϕ Consistency of belief

(sPI) Bϕ→ KBϕ Strong positive introspection

(sNI) ¬Bϕ→ K¬Bϕ Strong negative introspection

(KB) Kϕ→ Bϕ Knowledge implies belief

(FB) Bϕ→ BKϕ Full belief

Stalnaker’s additional axioms
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Stalnaker’s system

Let’s focus on the principles (KB) and (FB).

Kϕ→ Bϕ

“What you know you also believe.”

I Captures the idea that knowledge is stronger than belief.

I Knowledge is belief plus something extra.

Bϕ→ BKϕ

“If you believe ϕ, then you believe that you know ϕ.”

I Belief is not subjectively distinguishable from knowledge.
I This captures the “strong” sense of belief Stalnaker is after.

I An agent who feels certain that ϕ is true also feels certain that
she knows that ϕ is true.
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Stalnaker’s system

In this system, one can prove the following striking equivalence:

Bϕ↔ K̂Kϕ,

where K̂ abbreviates ¬K¬.

I This says that belief is equivalent to “the epistemic possibility
of knowledge”.

I In particular, in this system belief can be defined in terms of
knowledge.
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Stalnaker’s system

Given the strong sense of belief Stalnaker seeks to capture, each of
(KB) and (FB) has a certain plausibility.

However, their joint plausibility starts to waver when we push on
just what knowledge is supposed to mean.

Somewhat more precisely: tension between (KB) and (FB)
emerges when knowledge is interpreted more concretely in terms of
what is justified by a body of evidence.
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Knowledge from evidence

Consider the following informal account: an agent knows
something just in case it is entailed by the available evidence.

I E.g., in a card game one player might be said to know their
opponent is not holding two aces on the basis of the fact that
they are themselves holding three aces.

The standard possible worlds, relational semantics for epistemic
logic can be viewed as a formalization of this intuition.

I Roughly: each world w is associated with a set of possible
worlds R(w); the agent is said to know ϕ at w just in case ϕ
is true at all worlds in R(w).

I Think of the worlds in R(w) as those compatible with the
evidence at w; then the agent knows ϕ just in case the
evidence rules out all not-ϕ possibilities.

12 / 35



Knowledge from evidence

Consider the following informal account: an agent knows
something just in case it is entailed by the available evidence.

I E.g., in a card game one player might be said to know their
opponent is not holding two aces on the basis of the fact that
they are themselves holding three aces.

The standard possible worlds, relational semantics for epistemic
logic can be viewed as a formalization of this intuition.

I Roughly: each world w is associated with a set of possible
worlds R(w); the agent is said to know ϕ at w just in case ϕ
is true at all worlds in R(w).

I Think of the worlds in R(w) as those compatible with the
evidence at w; then the agent knows ϕ just in case the
evidence rules out all not-ϕ possibilities.

12 / 35



Evidence “in hand”

Another simple example: you’ve measured your height to be 5 feet
10 inches, ±1 inch. With this measurement in hand, you might be
said to know that you are less than 6 feet tall (having ruled out
the possibility that you are taller).

Call this the evidence-in-hand conception of knowledge.

This fits well with (KB) (Kϕ→ Bϕ).

I If you have evidence-in-hand that entails ϕ, you should be
certain of ϕ.

It does not sit comfortably with (FB) (Bϕ→ BKϕ).

I The implication seems false: you can be (subjectively) certain
of ϕ (Bϕ) without also being certain that you currently have
evidence-in-hand that guarantees ϕ (BKϕ).
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Evidence “out there”

Consider now a weaker, existential interpretation of “available
evidence”: there is evidence (somewhere out there) entailing ϕ.

I Not necessarily “in hand” at the moment.

I Intuitively, we’ve shifted from what’s known to what’s
knowable.

(FB) (Bϕ→ BKϕ) becomes a plausible principle.

I If you are certain of ϕ, then you are certain that there is
evidence entailing ϕ.

I Only believe what you think you could come to know.

(KB) (Kϕ→ Bϕ) falters.

I The mere fact that you could, in principle, discover evidence
entailing ϕ should not in itself imply that you believe ϕ.
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Knowledge and knowability

It seems we want the “evidence-in-hand” intuition for (KB), and
the “evidence-out-there” intuition for (FB). Let’s take both.

Let LK,2,B denote the language LK,B extended with a new unary
modality 2.
I Write Kϕ for “ϕ is entailed by the evidence-in-hand”.

I Gloss: “ϕ is known”.

I Write 2ϕ for “ϕ is entailed by the evidence-out-there”.
I Gloss: “ϕ is knowable”.

(KB) stays the same.

(FB) becomes (RB), “responsible belief”:

(Bϕ→ BKϕ) ; (Bϕ→ B2ϕ).
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Knowledge and knowability

So we need a class of models with enough structure to interpret
this richer language. For this, of course, we use topology.

Recall that the interior operator naturally corresponds to a notion
of knowability:

x ∈ int(A) ⇔ ∃U ∈ T(x ∈ U ⊆ A).

The interior of A consists of all those points x for which there is a
feasible measurement U (i.e., U ∈ T and x ∈ U) that entails A
(i.e., U ⊆ A).
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Topological semantics
Consider the language generated by:

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |Kϕ |2ϕ,

where p ∈ prop, Kϕ is read “ϕ is known”, and 2ϕ is read “ϕ is
knowable”.

Formulas of this language are interpreted in topological subset
models M = (X,T, v) with respect to pairs of the form (x, U)
where x ∈ U ∈ T.
I Such pairs are called epistemic scenarios: x represents the

actual world, and U represents the agent’s evidence-in-hand.

(x, U) |= p iff x ∈ v(p)

(x, U) |= ¬ϕ iff (x, U) 6|= ϕ

(x, U) |= ϕ ∧ ψ iff (x, U) |= ϕ and (x, U) |= ψ

(x, U) |= Kϕ iff U ⊆ [[ϕ]]U

(x, U) |= 2ϕ iff x ∈ int([[ϕ]]U ),

where [[ϕ]]U = {x ∈ U : (x, U) |= ϕ}.
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Logic for knowledge and knowability

The logic of a modalized interior operator has been well-studied, so
it comes as little surprise that 2 is an S4-modality.

The strong version of evidence-in-hand knowledge encoded by
these semantics makes K an S5-modality.

I S5 = S4 + (¬Kϕ→ K¬Kϕ), the “negative introspection”
axiom.

Theorem
The language LK,2 interpreted as above is axiomatized by

ELK,2 = S5K + S42 + (Kϕ→ 2ϕ).

This will serve as our “basic logic of knowledge and knowability”
(analogous to S4K in Stalnaker’s system).
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Logic for knowledge, knowability, and belief

What about belief?

Recall that in Stalnaker’s system, belief was reducible to knowledge
(via Bϕ↔ K̂Kϕ), obviating the need for a separate semantic
clause for B.

Can we take advantage of this?

Not directly: adding Stalnaker’s axioms (with (FB) replaced by
(RB)) to ELK,2 does not produce a logic strong enough to reduce
belief to knowledge/knowability.

? This is noteworthy: once we carefully distinguish knowledge
from knowability, Stalnaker’s postulates no longer imply that
belief is reducible.
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Logic for knowledge, knowability, and belief

However, we can strengthen ELK,2 with additional postulates to
obtain such a reduction.

Let SELK,2,B denote ELK,2 together with the following:

(KB) B(ϕ→ ψ)→ (Bϕ→ Bψ) Distribution of belief

(sPI) Bϕ→ KBϕ Strong pos. introspection

(KB) Kϕ→ Bϕ Knowledge implies belief

(RB) Bϕ→ B2ϕ Responsible belief

(wF) Bϕ→ 3ϕ Weak factivity

(CB) B(¬2ϕ→ 2¬2ϕ) Confident belief

Our additional axioms

(KB), (sPI), and (KB) are theorems of Stalnaker’s original system.

(RB) is the translation of (FB) we have already discussed.
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Logic for knowledge, knowability, and belief

Both (wF) and (CB) become theorems of Stalnaker’s original
system if we “forget” the distinction between 2 and K

I I.e., replace every 2 with K (and every 3 with K̂).

Weak factivity:

Bϕ→ 3ϕ

“If you are certain of ϕ, then ϕ cannot be knowably false.”

I Weaker form of factivity (Bϕ→ ϕ).

I You can believe false things, but you can’t believe knowably
false things.
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Logic for knowledge, knowability, and belief

Confident belief:

B(¬2ϕ→ 2¬2ϕ)

“You believe that if ϕ is unknowable, it is knowably unknowable.”

I Faith in the justificatory power of evidence.
I You are sure that ϕ is either knowable or, if not, that you

could come to know that it is unknowable.
I Topologically: “no boundary cases”, i.e., cases where no

measurement can entail ϕ yet every measurement leaves open
the possibility that some further measurement will.
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Logic for knowledge, knowability, and belief

SELK,2,B proves the following equivalence:

Bϕ↔ K32ϕ.

I Belief is definable from knowledge and knowability.

I To believe ϕ is to know that every measurement you might
take leaves open the possibility of taking some further
measurement that would guarantee ϕ.
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Logic for knowledge, knowability, and belief

In fact, this equivalence characterizes SELK,2,B as an extension of
ELK,2 in the following sense:

Proposition

ELK,2 + (Bϕ↔ K32ϕ) and SELK,2,B prove the same theorems.
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Logic for knowledge, knowability, and belief
Semantically, this equivalence corresponds to a particularly
appealing topological interpretation of belief:

(x, U) |= Bϕ iff (x, U) |= K32ϕ

iff U ⊆ cl(int([[ϕ]]U ))

iff [[ϕ]]U has dense interior in U.

I Dense interior is a standard topological notion of “largeness”.
I These are precisely the sets with nowhere dense complements.

I An equivalent semantics for belief first appears in a 2016
paper by Baltag, Bezhanishvili, Özgün, and Smets.

Intuitively, such a set fills “almost all” of the space. Morally, then:

(x, U) |= Bϕ iff for “almost all” y ∈ U , (y, U) |= ϕ.

I Knowledge = truth in all possible alternatives.

I Belief = truth in almost all possible alternatives.
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Logic for knowledge, knowability, and belief

Theorem
SELK,2,B is a sound and complete axiomatization of LK,2,B with
respect to the class of topological subset models using the
semantics for belief just presented.

Theorem
SELK,2,B proves all the KD45 principles for belief. In fact, KD45B
is a sound and complete axiomatization of the fragment LB with
respect to the class of topological subset models.

26 / 35



Weaker notions of belief

We adopted weak factivity (wF) and confident belief (CB) in order
to obtain a reduction result for belief analogous to Stalnaker’s.

Of course, we could drop one or both of these principles.

I In this case, belief is no longer reducible, so we need to
augment topological subset models to provide the structure
necessary to interpret belief as a primitive.

I We do this by introducing the doxastic range—intuitively,
collecting the “most plausible” worlds compatible with the
evidence-in-hand.

I We also import the idea of topological “almost all”
quantification directly into the semantics to produce models
for (CB) without (wF).
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Weaker notions of belief

Let ELK,2,B be the logic obtained by dropping the axioms (wF)
and (CB) from SELK,2,B.

As before, we rely on topological subset models; however, we now
define the evaluation of formulas with respect to epistemic-doxastic
(e-d) scenarios, which are tuples of the form (x, U, V ) where
(x, U) is an epistemic scenario, V ∈ T, and V ⊆ U .

I Call V the doxastic range.
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Weaker notions of belief

The key semantic clauses are:

(x, U, V ) |= Kϕ iff U = [[ϕ]]U,V

(x, U, V ) |= 2ϕ iff x ∈ int([[ϕ]]U,V )

(x, U, V ) |= Bϕ iff V ⊆ [[ϕ]]U,V ,

where
[[ϕ]]U,V = {x ∈ U : (x, U, V ) |= ϕ}.

I Modalities K and 2 are interpreted (essentially) as before.
I Belief is universal quantification over the doxastic range.

Intuitively:
I V is the agent’s “conjecture” about the world, typically

stronger than what is guaranteed by her evidence-in-hand U .
I States in V are considered “more plausible” than the other

states in U , so belief = truth in all these more plausible states.
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Weaker notions of belief

Note that we do not require that x ∈ V ; this corresponds to the
intuition that the agent may have false beliefs.

In order to distinguish these semantics from those previous, we
refer to them as epistemic-doxastic (e-d) semantics for topological
subset spaces.
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Weaker notions of belief

Theorem
ELK,2,B is a sound and complete axiomatization of LK,2,B with
respect to the class of all topological subset spaces under e-d
semantics.

Call an e-d scenario (x, U, V ) dense if V is dense in U (i.e., if
U ⊆ cl(V )).

Theorem
ELK,2,B + (wF) is a sound and complete axiomatization of LK,2,B

with respect to the class of all topological subset spaces under e-d
semantics for dense e-d scenarios.
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Weaker notions of belief

The reductive interpretation of the belief modality, namely

(x, U) |= Bϕ iff U ⊆ cl(int([[ϕ]]U )),

does not arise as a special case of our new e-d semantics.

I There is no condition (like density) one can put on the
doxastic range V that recovers this interpretation of B.

I Roughly: formulas of the form ¬2ϕ→ 2¬2ϕ correspond to
the open and dense sets, and in general no (nonempty) open
set V is contained in every open, dense set.

I Upshot: we can’t hope to validate (CB) in the e-d semantics
just presented without also validating B⊥.
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Weaker notions of belief

Solution: alter the semantic interpretation of the belief modality so
it “ignores” nowhere dense sets:

(x, U, V ) |≈ p iff x ∈ v(p)

(x, U, V ) |≈ ¬ϕ iff (x, U, V ) |6≈ ϕ

(x, U, V ) |≈ ϕ ∧ ψ iff (x, U, V ) |≈ ϕ and (x, U, V ) |≈ ψ

(x, U, V ) |≈ Kϕ iff U = [(ϕ)]U,V

(x, U, V ) |≈ 2ϕ iff x ∈ int([(ϕ)]U,V )

(x, U, V ) |≈ Bϕ iff V ⊆∗ [(ϕ)]U,V ,

where
[(ϕ)]U,V = {x ∈ U : (x, U, V ) |≈ ϕ},

and we write A ⊆∗ B iff A−B is nowhere dense.

The belief modality now effectively quantifies over almost all
worlds in the doxastic range V rather than over all worlds.
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Weaker notions of belief

Theorem
ELK,2,B + (CB) is a sound and complete axiomatization of LK,2,B

with respect to the class of all topological subset spaces under e-d
semantics using the semantics given above:

∀ϕ ∈ LK,2,B( |≈ ϕ ⇔ `ELK,2,B+(CB) ϕ).
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Thank you!
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