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Space?

Topology is the abstract mathematical study of spatial structure.

Topological spaces encode a notion of “nearness” without
explicitly specifying a distance metric.

What could this have to do with epistemology?
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Robustness

Consider a set X. Let x ∈ X, and let A ⊆ X. Then either x ∈ A
or x /∈ A.

Set membership is a binary affair.
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Robustness

Does it ever make sense to think of membership as a graded
notion? Spatial intuitions provide a context where this seems
natural: the point x is “fully” or “robustly” in the set A, whereas
y is only just “barely” in A.
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Robustness

How can this intuition be formalized?

Idea: x is robustly in A if there exists a set U such that x ∈ U and
U ⊆ A. U acts as a “witness” to x’s membership in A.

6 / 30



Robustness

How can this intuition be formalized?

Idea: x is robustly in A if there exists a set U such that x ∈ U and
U ⊆ A. U acts as a “witness” to x’s membership in A.

7 / 30



Robustness

How can this intuition be formalized?

Idea: x is robustly in A if there exists a set U such that x ∈ U and
U ⊆ A. U acts as a “witness” to x’s membership in A.

8 / 30



Robustness

How can this intuition be formalized?

Idea: x is robustly in A if there exists a set U such that x ∈ U and
U ⊆ A. U acts as a “witness” to x’s membership in A.

9 / 30



Robustness

Problem: take U = {y}. Then y ∈ {y} ⊆ A. This reduces the
notion of robustness to plain old membership.

Solution: restrict what counts as a “witness”.
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Topological spaces

A topological space is a set X together with a collection T ⊆ 2X

of open sets (satisfying certain constraints).

I T is called a topology on X.

Open sets are what count as “possible witnesses”. We say that x
is in the interior of A, and write x ∈ int(A), if there exists an
open set U ∈ T such that x ∈ U ⊆ A.

I Intuition: each open set U represents a certain notion of
“nearness”.

I A point x is in the interior of a set A iff all “nearby” points
(according to some notion of nearness) are also in A.
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Topological spaces

Officially, to be a topology on X, T must satisfy the following:

I ∅ ∈ T and X ∈ T.
I If U, V ∈ T then also U ∩ V ∈ T.

I “T is closed under pairwise intersections.”

I If C ⊆ T then also
⋃

C ∈ T.
I “T is closed under arbitrary unions.”

In practice, one often specifies a topology by identifying a set of
“basic” open sets and then simply throwing in all their unions.

12 / 30



Topological spaces

Officially, to be a topology on X, T must satisfy the following:

I ∅ ∈ T and X ∈ T.
I If U, V ∈ T then also U ∩ V ∈ T.

I “T is closed under pairwise intersections.”

I If C ⊆ T then also
⋃

C ∈ T.
I “T is closed under arbitrary unions.”

In practice, one often specifies a topology by identifying a set of
“basic” open sets and then simply throwing in all their unions.

12 / 30



Topological spaces

Example: the Euclidean topology on R is generated by declaring all
positive radius open intervals to be “basic” open sets.

I The open interval of radius ε centered at c ∈ R is:

Bε(c) = {x ∈ R : |x− c| < ε}
= {x ∈ R : c− ε < x < c+ ε}
= (c− ε, c+ ε).

I According to this topological structure, x ∈ int(A) just in
case every real number “sufficiently close” to x (i.e., within
some ε) is also in A.

I This can be generalized to higher-dimensional Euclidean
spaces Rn by interpreting “radius ε” using the appropriate
n-dimensional notion of distance.
I Think: Pythagoras.

13 / 30



Topological spaces

Example: the Euclidean topology on R is generated by declaring all
positive radius open intervals to be “basic” open sets.

I The open interval of radius ε centered at c ∈ R is:

Bε(c) = {x ∈ R : |x− c| < ε}
= {x ∈ R : c− ε < x < c+ ε}
= (c− ε, c+ ε).

I According to this topological structure, x ∈ int(A) just in
case every real number “sufficiently close” to x (i.e., within
some ε) is also in A.

I This can be generalized to higher-dimensional Euclidean
spaces Rn by interpreting “radius ε” using the appropriate
n-dimensional notion of distance.
I Think: Pythagoras.

13 / 30



Topological spaces

Example: the Euclidean topology on R is generated by declaring all
positive radius open intervals to be “basic” open sets.

I The open interval of radius ε centered at c ∈ R is:

Bε(c) = {x ∈ R : |x− c| < ε}
= {x ∈ R : c− ε < x < c+ ε}
= (c− ε, c+ ε).

I According to this topological structure, x ∈ int(A) just in
case every real number “sufficiently close” to x (i.e., within
some ε) is also in A.

I This can be generalized to higher-dimensional Euclidean
spaces Rn by interpreting “radius ε” using the appropriate
n-dimensional notion of distance.
I Think: Pythagoras.

13 / 30



Topological spaces

Example: the Euclidean topology on R is generated by declaring all
positive radius open intervals to be “basic” open sets.

I The open interval of radius ε centered at c ∈ R is:

Bε(c) = {x ∈ R : |x− c| < ε}
= {x ∈ R : c− ε < x < c+ ε}
= (c− ε, c+ ε).

I According to this topological structure, x ∈ int(A) just in
case every real number “sufficiently close” to x (i.e., within
some ε) is also in A.

I This can be generalized to higher-dimensional Euclidean
spaces Rn by interpreting “radius ε” using the appropriate
n-dimensional notion of distance.
I Think: Pythagoras.

13 / 30



Topological spaces

This is not the only topology that can be attached the to set R of
real numbers.

In fact, given any set X (including R), there are two “extreme”
topologies we can consider.

I T = 2X , the full powerset of X.
I Every set is open, including every singleton set.
I Intuitively: nothing is “close” to anything because every point

can be individually separated with an open set.
I Formally, for all A ⊆ X, we have x ∈ int(A) iff x ∈ A.
I This is called the discrete topology on X.

I T = {∅, X}, the smallest possible topology on X.
I Intuitively: everything is “close” to everything, because no

point can be separated from anything else with an open set.
I Formally, for all A ⊆ X, int(A) = ∅ unless A = X.
I This is called the indiscrete topology on X.
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The interior operator

It is easy to see that

int(A) = {x ∈ X : (∃U ∈ T)(x ∈ U ⊆ A)}
⊆ A,

so int is a “shrinking” operator.

The interior operator also satisfies several other properties, each of
which can be proved fairly straightforwardly (these are good
exercises!):

I int(X) = X

I int(A ∩B) = int(A) ∩ int(B)

I int(int(A)) = int(A)

I If A ⊆ B then int(A) ⊆ int(B)
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Closure
In addition to “robust membership”, topological structure gives us
the ability to capture a point being “almost” in a set.

I Intuitively: x is “almost” in A if every notion of closeness
around x overlaps with A.

I Formally: x is in the closure of A if for every U ∈ T such
that x ∈ U , we have U ∩A 6= ∅.

Let cl(A) denote the set of all points in the closure of A.

I It is easy to check that cl(A) ⊇ A, so closure is an expanding
operator.

I In fact, closure and interior are dual:

cl(A) = X int(X A)).

I Intuition: being almost in A is the same as not being robustly
in the complement of A. Proof: exercise.
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Interior algebra

The interior operator “remembers” all the open sets because the
open sets are precisely its fixed points.

I For all A ⊆ X, A is open iff int(A) = A.

In fact, given a set X together with an operator I : 2X → 2X

satisfying the properties from the previous slide...

I I(X) = X, I(A ∩B) = I(A) ∩ I(B), I(A) ⊆ A,
I(I(A)) = I(A), A ⊆ B ⇒ I(A) ⊆ I(B)

...we can define a topology by setting

TI = {A ⊆ X : I(A) = A},

and the interior operator corresponding to this topology coincides
exactly with I.
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Topological semantics

Consider the basic modal language generated by

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |2ϕ,

where p ∈ prop.

Formulas of this language can be interpreted in topological
models M = (X,T, v), where:

I (X,T) is a topological space, and

I v : prop→ 2X is a valuation.

The truth set of ϕ is defined as before, with one major difference:

[[2ϕ]] = int([[ϕ]]).
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The “logic of space”

Topology Modal Logic

int(X) = X 2> ↔ >
int(A ∩B) = int(A) ∩ int(B) 2(ϕ ∧ ψ)↔ (2ϕ ∧2ψ)

int(A) ⊆ A 2ϕ→ ϕ

int(A) ⊆ int(int(A)) 2ϕ→ 22ϕ

if A ⊆ B then int(A) ⊆ int(B) from ϕ→ ψ infer 2ϕ→ 2ψ

These principles yield a logic equivalent to the classical S4 system,
which constitutes a sound and complete axiomatization of the class
of all topological spaces.

I Every statement one can articulate in this language that is
valid in all topological spaces is derivable from these principles
(plus classical reasoning).
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Topology as epistemology

Think of U as a piece of evidence that (imperfectly) indicates the
true state of the world: the points in U are precisely those that are
compatible with the evidence.

E.g., U might be the result of some measurement with error.
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Topology as epistemology

Such a “measurement” U is not precise enough to tell you the
exact state of the world.

However, it can still be informative: in the above, it is precise
enough to indicate that A holds.
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Topology as epistemology

On this view, the interior of A is the set of points where A is
“measurably” or “observably” true—that is, where A could come
to be known.

This notion is then captured by the corresponding modality.
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Knowability

By definition, 2ϕ holds at exactly those worlds where there exists
some open witness U ∈ T (intuitively, a piece of evidence) that
entails ϕ: x ∈ U ⊆ [[ϕ]].

We might then read 2ϕ as “ϕ is measurably true”, “ϕ is
verifiable”, or “ϕ is knowable”.

This gives new interpretations for some central validities (and
non-validities):

3 2ϕ→ ϕ
I Only what is true can come to be known.

3 2ϕ→ 22ϕ
I Whatever is knowable you can verify is knowable.
I (All evidence is evidence that it itself exists.)

7 ¬2ϕ→ 2¬2ϕ
I Something may be unknowable without there being any way to

verify that it is unknowable.
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Unfalsifiability

Recall that we write 3 for ¬2¬, the dual of 2; we therefore have:

[[3ϕ]] = [[¬2¬ϕ]]

= X int(X [[ϕ]])

= cl([[ϕ]])

= {x ∈ X : ∀U ∈ T(x ∈ U implies U ∩ [[ϕ]] 6= ∅)}.

We might then read 3ϕ as “ϕ is unfalsifiable”.

I If 3ϕ is true at state x, then no measurement one could take
at x would rule out the possibility of ϕ.

24 / 30



Unfalsifiability

Recall that we write 3 for ¬2¬, the dual of 2; we therefore have:

[[3ϕ]] = [[¬2¬ϕ]]

= X int(X [[ϕ]])

= cl([[ϕ]])

= {x ∈ X : ∀U ∈ T(x ∈ U implies U ∩ [[ϕ]] 6= ∅)}.

We might then read 3ϕ as “ϕ is unfalsifiable”.

I If 3ϕ is true at state x, then no measurement one could take
at x would rule out the possibility of ϕ.

24 / 30



Topology and accessibility

It is illuminating to consider the connection between topological
models and the relational epistemic models considered previously.

I The class of reflexive and transitive frames also corresponds to
the S4 axiom system.
I Specifically: validating 2ϕ→ ϕ and 2ϕ→ 22ϕ.

I Are reflexive and transitive frames “like” topological spaces in
some way?
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Topology and accessibility

Theorem
Every reflexive and transitive model (W,R, v) can be transformed
into a topological model (W,TR, v) making the same formulas true
and false at each world.

Proof (sketch).

Define the topology TR by insisting that every set of the form
R(x) be open. Reflexivity and transitivity guarantee that for each
x, R(x) is the smallest open set containing x. This simplifies the
interior—quantifying over opens is replaced by simply choosing the
smallest possible open:

x ∈ int([[ϕ]]) iff ∃U ∈ TR(x ∈ U ⊆ [[ϕ]])

iff R(x) ⊆ [[ϕ]]

Thus the topological semantics for 2ϕ agrees with the relational
semantics.
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Topology and accessibility
A topological space where every point is contained in a smallest
open set is called an Alexandroff space.

I In essence, reflexive and transitive frames can be thought of
as Alexandroff spaces in disguise.

I There are lots of spaces that do not have this property (e.g.,
any Euclidean space Rn).

I In this sense topological spaces are a generalization of
reflexive and transitive frames.

Epistemically speaking, if there is a smallest open set U containing
x, then what could come to be known at x amounts simply to
what would be known if U were learned.

I What is knowable is just what would be known given the best
evidence.

I Epistemic accessibility in this context captures those worlds
that are compatible with the best evidence.
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Topological subset models
What if we want to reason about knowledge and knowability?

Consider the language LK,2 generated by

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |Kϕ |2ϕ,

where p ∈ prop.

A topological subset model is a topological space (X,T)
together with a valuation v : prop→ 2X specifying the worlds
where each primitive proposition p ∈ prop is true.

Crucially, formulas of LK,2 are interpreted with respect to pairs of
the form (x, U) where x ∈ U ∈ T.

I x represents the actual world, as usual.
I U represents the agent’s current evidence.

I Intuitively, this is what their knowledge is based on.
I The condition x ∈ U captures factivity.
I The condition U ∈ T corresponds to our interpretation of T as

collecting all the possible pieces of evidence.
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Topological subset models

These intuitions are formalized in the following semantic clauses:

(x, U) |= p iff x ∈ v(p)

(x, U) |= ¬ϕ iff (x, U) 6|= ϕ

(x, U) |= ϕ ∧ ψ iff (x, U) |= ϕ and (x, U) |= ψ

(x, U) |= Kϕ iff U ⊆ [[ϕ]]U

(x, U) |= 2ϕ iff x ∈ int([[ϕ]]U ),

where [[ϕ]]U = {x ∈ U : (x, U) |= ϕ}.
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Logic for knowledge and knowability

We have already seen that interior-based semantics for 2 produces
an S4-modality.

These semantics also encode a strong evidence-based notion of
knowledge, making K into an S5-modality.

Theorem
The language LK,2 interpreted as above is axiomatized by

ELK,2 = S5K + S42 + (Kϕ→ 2ϕ).
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