
Day 5: The Epistemology of Nondeterminism
NASSLLI 2022

Adam Bjorndahl

Carnegie Mellon University

1 / 29



Propositional dynamic logic

Propositional dynamic logic (PDL) is a framework for reasoning
about nondeterministic program execution.

Models are relational structures interpreted as state transition
diagrams:

I Each program π is associated with a binary relation Rπ on the
state space.

I xRπy means that the state y is one possible result of
executing π in x.
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Propositional dynamic logic

The language of PDL includes a unary modality 〈π〉 for each
program π, where

x |= 〈π〉ϕ ⇔ ∃y(xRπy and y |= ϕ).

Thus, 〈π〉ϕ is true just in case some possible execution of π results
in ϕ.

What is the sense of possibility at play here? We explore an
epistemic account.
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Nondeterminism as uncertainty?

Can we understand nondeterminism as a kind of uncertainty?

1. Reinterpret program execution as fundamentally deterministic.

I Replace each relation Rπ ⊆ X2 with a function fπ : X → X.
I Write #πϕ for “after π, ϕ”:

x |= #πϕ ⇔ fπ(x) |= ϕ.

2. Enrich the logical setting with a standard knowledge modality
K, with dual K̂, and define

〈π〉ϕ ≡ K̂#πϕ.
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Nondeterminism as uncertainty?

〈π〉ϕ ≡ K̂#πϕ.

On this view, the nondeterministic outcomes of π are simply those
compatible with the agent’s current state of knowledge.

I But this seems to miss the essence of nondeterminism.

I For a very uninformed agent, we must interpret π as having
many possible nondeterministic outcomes.

I There is a clear intuitive distinction between those outcomes
of π that are possible as far as some (possibly quite ignorant)
agent knows, and those outcomes that would remain possible
even with good information.
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Nondeterminism as uncertainty?

Suppose you run a random number generator. This seems a
canonical example of a nondeterministic process.

I Not only do you not know what number will be generated,
but you are unable in principle to determine this in advance.

By contrast, suppose you run a program that prints the next entry
in a given database.

I We do not want to call this program nondeterministic, even if
you happen to currently be ignorant about the contents of the
database.

This is a distinction we want to respect.

I The relevant epistemic notion is not what any given agent
currently happens to know, but what they could come to
know.
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Topological semantics
We need models rich enough to encode this notion of “potential
knowledge” or “knowability”. Of course, we use topology.

Consider the modal language generated by

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |2ϕ,

where p ∈ prop and 2ϕ stands for “ϕ is knowable”.

Formulas of this language are interpreted in topological models
M = (X,T, v), where:

I (X,T) is a topological space, and

I v : prop→ 2X is a valuation.

x |= p ⇔ x ∈ v(p)

x |= ¬ϕ ⇔ x 6|= ϕ

x |= ϕ ∧ ψ ⇔ x |= ϕ and x |= ψ

x |= 2ϕ ⇔ x ∈ int([[ϕ]]).
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Topological semantics

Recall that we write 3 for ¬2¬, the dual of 2, and
correspondingly interpret it as the dual of the interior operator:

x |= 3ϕ ⇔ x ∈ cl([[ϕ]])

⇔ ∀U ∈ T(x ∈ U implies U ∩ [[ϕ]] 6= ∅).

We then read 3ϕ as “ϕ is unfalsifiable”: no measurement one
could take at state x would rule out the possibility of ϕ.
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Dynamic topological logic

Topological models equipped with a function f : X → X have
been studied in depth.1 These are called dynamic topological
models.

Of course, we can also equip a topological model with a family of
functions {fπ}π∈Π, and expand the basic language with the
dynamic modalities defined previously:

x |= #πϕ ⇔ fπ(x) |= ϕ.

1Kremer, P. and Mints, G. Dynamic Topological Logic.
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Nondeterminism as unfalsifiability

This setting is rich enough to realize our earlier intuition.

Identify the nondeterministic outcomes of a program π with those
that cannot be ruled out by any feasible measurement:

〈π〉ϕ ≡ 3#πϕ.

Dually,
[π]ϕ ≡ 2#πϕ.

That is, ϕ is a guaranteed outcome of π just in case there is some
measurement the agent can take before running π that guarantees
ϕ will be true after running π.
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Nondeterminism as unfalsifiability
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Embedding PDL in dynamic topological logic

We will return to refine this understanding of nondeterminism, but
first we should check that our topological reinterpretation of PDL
is true to the original.

The most basic version of (serial) PDL (without any operations on
programs) is axiomatized by

CPL propositional tautologies

Kπ [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ)

Dπ [π]ϕ→ 〈π〉ϕ
MP from ϕ and ϕ→ ψ deduce ψ

Necπ from ϕ deduce [π]ϕ.

Call this system SPDL0.
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Embedding PDL in dynamic topological logic

Of course, we can interpret the language of PDL directly in
dynamic topological models via our characterization of 〈π〉:

x |= 〈π〉ϕ ⇔
(
x |= 3#πϕ

)
⇔ x ∈ cl(f−1

π ([[ϕ]])).

Under these semantics, we obtain the following result.

Proposition

SPDL0 is a sound and complete axiomatization of the language of
PDL with respect to the class of all dynamic topological models.
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Embedding PDL in dynamic topological logic
In fact, given any (serial) PDL model M = (X, (Rπ)π∈Π, v), we
can construct a dynamic topological model

M̃ = (X̃,T, (fπ)π∈Π, ṽ)

where for every x ∈ X there exists α ∈ X̃ such that x and α agree
on all formulas of PDL.

I Points α ∈ X̃ are networks of Rπ-paths through X:
I α : Π∗ → X where (∀~π ∈ Π∗)(∀π ∈ Π)(α(~π)Rπα(~π, π)).

I The topology is generated by open sets that group together
networks that start at the same point:
I Basic opens are Ux = {α ∈ X̃ : α(∅) = x}.

I Each fπ increments networks by prefixing the program π:
I fπ(α)(~π) = α(π, ~π).

I Primitive propositions get their values from the network
starting point:
I ṽ(p) = {α ∈ X̃ : α(∅) ∈ v(p)}.
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Continuity

Continuity is a fundamental notion in topology.

I A function f is continuous if the preimage of every open set is
open: i.e., f−1(U) is open whenever U is open.

I Intuitively, a function is continuous if very small changes to
the input produce very small changes in the output.

What does continuity correspond to in the present framework?
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Continuity

Continuity of fπ can be characterized in the language of dynamic
topological logic via the scheme

#π2ϕ→ 2#πϕ.

“If, after executing π, ϕ is (not only true, but also) measurably
true, then it is possible to take a measurement right now that
guarantees that ϕ will be true after executing π.”

As an axiom scheme, this says: whatever one could learn about the
state of the system after the program execution one could also
learn in advance of the program execution.

This is determinism! Continuity is determinism.
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Continuity is determinism

This refines our earlier intuitions about (non)determinism.
I It may be that no measurement at x rules out all the other

states.
I This is the case whenever {x} is not open.

I But this does not imply nondeterminism!
I It may still be possible to learn (in advance) everything that

can be known about the effects of executing π.
I This is the case iff f is continuous at x.
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Continuity is determinism

18 / 29



Incorporating knowledge

This interpretation of nondeterminism is epistemic in a certain
sense, but involves only “knowability”, not knowledge itself.

What if we want to reason about knowledge as well?
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Topological subset models

Topological subset models are well-suited to the simultaneous
representation of both knowledge and knowability.
I They underlie previous work on public announcements in

topological spaces.
I The precondition for an announcement of ϕ is taken to be the

knowability of ϕ (i.e., 2ϕ).

I They have been used to study the interplay between
knowledge, knowability, and belief.
I Stalnaker’s principle of “strong belief” (or “full belief”),

Bϕ→ BKϕ, is weakened to Bϕ→ B2ϕ.
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Topological subset models

A topological subset model is a topological space (X,T)
together with a valuation v : prop→ 2X where truth is defined
with respect to pairs of the form (x, U) where x ∈ U ∈ T.

I x represents the actual world, and U represents the agent’s
current evidence.

(x, U) |= p ⇔ x ∈ v(p)

(x, U) |= ¬ϕ ⇔ (x, U) 6|= ϕ

(x, U) |= ϕ ∧ ψ ⇔ (x, U) |= ϕ and (x, U) |= ψ

(x, U) |= Kϕ ⇔ U ⊆ [[ϕ]]U

(x, U) |= 2ϕ ⇔ x ∈ int([[ϕ]]U ),

where [[ϕ]]U = {x ∈ U : (x, U) |= ϕ}.
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Dynamic topological subset models

We can define dynamic topological subset models simply by
incorporating functions fπ as before.

But we need subset-style semantics for the dynamic modalities:

(x, U) |= #πϕ ⇔ (fπ(x), ??) |= ϕ.

Perhaps the most natural definition sets the updated information
state to be fπ(U).

I This only works if fπ(U) is open.

(x, U) |= #πϕ ⇔ (fπ(x), fπ(U)) |= ϕ.
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Dynamic topological subset models

This logic is axiomatized by combining the S5 system for K and
the S4 system for 2 with the following:

KI Kϕ→ 2ϕ

¬-Cπ #π¬ϕ↔ ¬#πϕ

∧-Cπ #π(ϕ ∧ ψ)↔ (#πϕ ∧#πψ)

K-Cπ #πKϕ↔ K#πϕ

Oπ 2#πϕ→ #π2ϕ

Necπ from ϕ deduce #πϕ.
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Dynamic topological subset models

When the functions fπ are allowed to be partial, the extra axioms
have to be adjusted:

KI Kϕ→ 2ϕ

¬-PCπ #π¬ϕ↔ (¬#πϕ ∧#π>)

∧-Cπ #π(ϕ ∧ ψ)↔ (#πϕ ∧#πψ)

K-PCπ #π> → (#πKϕ↔ K(#π> → #πϕ)

Oπ (2¬#πϕ ∧#π>)→ #π2¬ϕ
Monπ from ϕ→ ψ deduce #πϕ→ #πψ.
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Learning?

In a sense, this setting cannot capture learning.

I True, an agent’s state of knowledge changes in accordance
with program execution...

I ...but every “live” possibility y ∈ U is preserved as the
corresponding state fπ(y) in the updated information set
fπ(U).

I Possibilities are never eliminated, only updated.

Perhaps we should incorporate some tools from dynamic epistemic
logic (e.g., announcements) to represent acts of information
update that truly eliminate states?

In fact, PDL already provides some tools we can adapt for this
purpose.
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Test programs

The standard language of PDL is sometimes extended to include
“test programs”, written ϕ?, where ϕ is a formula in the language.

The corresponding relation is defined by

xRϕ?y iff x = y and x ∈ [[ϕ]].

So the test ϕ? does nothing if ϕ is true and crashes otherwise.

This process is already deterministic; for primitive propositions p,
we can import Rp? as a partial function:

fp?(x) =

{
x if x ∈ [[p]]

undefined otherwise.
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Test programs
Problem: the function fp? is open iff [[p]] is open.

I What if p is true but not measurably true at some state?

I Intuition: at such states the program should crash since it
fails to determine that p is true.

Take two:

fp?(x) =

{
x if x ∈ int([[p]])
undefined otherwise.

So we have:

(x, U) |= #p?ϕ ⇔ (fp?(x), fp?(U)) |= ϕ

⇔ (x, U ∩ int([[p]])) |= ϕ (and this is defined).

This coincides exactly with the topological definition of a public
announcement of p.
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Ongoing work

There are many further questions...

I Can we make sense of public announcements of epistemic
formulas in this setting?

I Can we import nondeterministic operations on programs, like
union or Kleene star?
I Or is it better to focus on deterministic analogues? E.g.:

I “If ϕ, do π1, else do π2.”
I “Do π until ϕ.”

I Can we augment this framework to provide a formal epistemic
theory of probabilisitic nondeterminism, i.e., chance?
I Represent chance as neither an external feature of the world,

nor an internal, subjective feature of an agent...
I ...but rather as a relationship between the world and the

agent’s ability to gather information.
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Thank you!
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Operations on programs

PDL is often enhanced by equipping Π with certain operations:

I sequencing: π1;π2 executes π1 followed immediately by π2;

I nondeterministic union: π1 ∪ π2 nondeterministically executes
either π1 or π2;

I iteration: π∗ repeatedly executes π some nondeterministic
finite number of times.

The latter two may be difficult to interpret in a setting where
program execution is fundamentally deterministic.

However, sequencing appears straightforward. Define

fπ1;π2 = fπ2 ◦ fπ1 .
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Topological dynamics with sequencing

(Serial) PDL with sequencing is axiomatized by

SPDL0 + 〈π1;π2〉ϕ↔ 〈π1〉〈π2〉ϕ.

This scheme is not valid in arbitary dynamic topological models:

[[〈π1;π2〉ϕ]] = cl(f−1
π1;π2([[ϕ]])) = cl(f−1

π1 (f−1
π2 ([[ϕ]]))),

whereas
[[〈π1〉〈π2〉ϕ]] = cl(f−1

π1 (cl(f−1
π2 ([[ϕ]])))).

The extra closure operator means we have

[[〈π1;π2〉ϕ]] ⊆ [[〈π1〉〈π2〉ϕ]]

but not, in general, equality.
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Topological dynamics with sequencing

A function f is called open if it maps open sets to open sets: i.e.,
if f(U) is open whenever U is open.

It is not hard to see that if fπ1 is open, then

[[〈π1;π2〉ϕ]] = [[〈π1〉〈π2〉ϕ]].

So the sequencing axiom is valid on the class of dynamic
topological models where each fπ is open.

I Roughly speaking, fπ being open has a “perfect recall” type
flavour: what is knowable in advance of executing π is also
knowable after executing π.
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